GEOMETRÍA
La geometría (del latín geometrĭa, y este del griego γεωμετρία de γῆ gē, ‘tierra’, y μετρία metría, ‘medida’) es una rama de la matemática que se ocupa del estudio de las propiedades de las figuras en el plano o el espacio, incluyendo: puntos, rectas, planos, politopos (que incluyen paralelas, perpendiculares, curvas, superficies, polígonos, poliedros, etc.).
Es la base teórica de la geometría descriptiva o del dibujo técnico. También da fundamento a instrumentos como el compás, el teodolito, el pantógrafo o el sistema de posicionamiento global (en especial cuando se la considera en combinación con el análisis matemático y sobre todo con las ecuaciones diferenciales).
Sus orígenes se remontan a la solución de problemas concretos relativos a medidas. Tiene su aplicación práctica en física aplicada, mecánica, arquitectura, geografía, cartografía, astronomía, náutica, topografía, balística etc. Y es útil en la preparación de diseños e incluso en la elaboración de artesanía.
La geometría es una de las ciencias más antiguas. Inicialmente está constituida en un cuerpo de conocimientos prácticos en relación con las longitudes, áreas y volúmenes. La civilización babilónica fue una de las primeras culturas en incorporar el estudio de la geometría. La invención de la rueda abrió el camino al estudio de la circunferencia y posteriormente al descubrimiento del número π (pi); También desarrollaron el sistema sexagesimal, al conocer que cada año cuenta con 360 días, además implementaron una fórmula para calcular el área del trapecio rectángulo.1 En el Antiguo Egipto estaba muy desarrollada, según los textos de Heródoto, Estrabón y Diodoro Sículo. Euclides, en el siglo III a. C. configuró la geometría2 en forma axiomática y constructiva, tratamiento que estableció una norma a seguir durante muchos siglos: la geometría euclidiana descrita en Los Elementos.
El estudio de la astronomía y la cartografía, tratando de determinar las posiciones de estrellas y planetas en la esfera celeste, sirvió como importante fuente de resolución de problemas geométricos durante más de un milenio. René Descartes desarrolló simultáneamente el álgebra de ecuaciones y la geometría analítica, marcando una nueva etapa, donde las figuras geométricas, tales como las curvas planas, podrían ser representadas analíticamente, es decir, con funciones y ecuaciones. La geometría se enriquece con el estudio de la estructura intrínseca de los entes geométricos que analizan Euler y Gauss, que condujo a la creación de la topología y la geometría diferencial.
Puntos, segmentos, rectas y planos
El PUNTO es una «figura geométrica» adimensional: no tiene longitud, área, volumen, ni otro ángulo dimensional. No es un objeto físico. Describe una posición en el espacio, determinada respecto de un sistema de coordenadas preestablecido.
A los puntos se les suele nombrar con una letra mayúscula: A, B, C, etc.

El concepto de punto, como ente geométrico, surge en la antigua concepción griega de la geometría, compilada en Alejandría por Euclides en su tratado Los Elementos, dando una definición de punto excluyente: «lo que no tiene ninguna parte». El punto, en la geometría clásica se basa en la idea de que era un concepto intuitivo, el ente geométrico «sin dimensiones», y sólo era necesario asumir la noción de punto.
Esa cuestión fue analizada por A. N. Whitehead en: Una investigación sobre los principios naturales de conocimiento (An Inquiry Concerning the Principles of Natural Knowledge), y El concepto de la Naturaleza (The concept of Nature). En estos libros se expone la «relación de inclusión». En Proceso y Realidad (Process and Reality) Whitehead propone un nuevo enfoque basado en la «relación de conexión» topológica. También H. J. Schmidt plantea una visión totalmente distinta del punto geométrico.
Determinación geométrica
Un punto puede determinarse con diversos sistemas de referencia:
En el sistema de coordenadas cartesianas, se determina mediante las distancias ortogonales a los ejes principales, que se indican con dos letras o números: (x, y) en el plano; y con tres en el espacio (x, y, z).
En coordenadas polares, mediante su distancia al centro y la medida angular respecto del eje de referencia: (r, θ).
En coordenadas esféricas, mediante su distancia al centro y la medida angular respecto de los ejes de referencia: (r, θ, φ).
En coordenadas cilíndricas, mediante coordenadas radial, acimutal y altura: (ρ, φ, z).
También se pueden emplear sistemas de coordenadas elípticas, parabólicas, esferoidales, toridales, etc.
SEGMENTO
Un segmento, en geometría, es un fragmento de recta que está comprendido entre dos puntos.
ó también
Segmento es la porción de recta limitada por dos puntos, llamados extremos.
Este es el Segmento AB


Tipos de segmentos
Segmento nulo: Un segmento es nulo cuando sus extremos coinciden.
Ejemplo: Un punto
Segmentos consecutivos
Dos segmentos son consecutivos cuando tienen un extremo en común.
![]() | ![]() |
Según pertenezcan o no a la misma línea, se clasifican en:
Colineales

No colineales: Los segmentos consecutivos no colineales, llamados poligonal o quebrada, pueden ser abiertos o cerrados según tengan o no extremos comunes el primer y el último segmento que lo forman. Las poligonales cerradas forman polígonos.

LA RECTA
En geometría euclidiana, la recta o línea recta, es el ente ideal que se extiende en una misma dirección, existe en una sola dimensión y contiene infinitos puntos; está compuesta de infinitos segmentos (el fragmento de línea más corto que une dos puntos). También se describe como la sucesión continua e indefinida de puntos en una sola dimensión, o sea, no posee principio ni fin.

La Recta se nombra con una letra Minúscula o dos Mayúsculas y se lee la recta AB, la recta HG y la recta m.
Los planos suelen nombrarse con una letra del alfabeto griego: Alfa (α), Beta (β), Theta (θ), Fi (φ) entre otras

LA SEMIRECTA
La Semirecta se nombra con dos Mayúsculas y se lee la Semirecta AB, la Semirecta HG.


PLANO
En geometría, un plano es el ente ideal que sólo posee dos dimensiones, y contiene infinitos puntos y rectas; es uno de los entes geométricos fundamentales junto con el punto y la recta.
Solamente puede ser definido o descrito en relación a otros elementos geométricos similares. Se suele describir apoyándose en los postulados característicos, que determinan las relaciones entre los entes geométricos fundamentales. .-Cuando se habla de un plano, se está haciendo referencia a la superficie geométrica que no posee volumen (es decir, que es sólo bidimensional) y que posee un número infinito de rectas y puntos que lo cruzan de un lado al otro. Sin embargo, cuando el término se utiliza en plural, se está hablando de aquel material que es elaborado como una representación gráfica de superficies de diferente tipo. Los planos son especialmente utilizados en ingeniería, arquitectura y diseño ya que sirven para diagramar en una superficie plana otras superficies que son regularmente tridimensionales.
Un plano queda definido por los siguientes elementos geométricos:
- Tres puntos no alineados.
- Una recta y un punto exterior a ella.
- Dos rectas paralelas.
- Dos rectas que se cortan
Los planos suelen nombrarse con una letra del alfabeto griego: Alfa (α), Beta (β), Theta (θ), Fi (φ) entre otras
Suele representarse gráficamente, para su mejor visualización, como una figura delimitada por bordes irregulares (para indicar que el dibujo es una parte de una superficie infinita).
ÁNGULOS
¿Qué es Ángulo?
Ángulo es un concepto de la Geometría para referirse al espacio comprendido entre la intersección de dos líneas que parten de un mismo punto o vértice, y que es medido en grados.
La palabra proviene del latín angŭlus, y esta a su vez del griego ἀγκύλος, que significa "encorvado".
En el uso cotidiano, la palabra ángulo también puede utilizarse como sinónimo de rincón (en el sentido de ángulo entrante) como, por ejemplo: “¿En qué ángulo de la sala prefieres poner el sofá?”; de esquina o arista: “Cuidado con los ángulos de la mesa: te puedes golpear”; así como de punto de vista: “¿Ya evaluaste la situación desde todos los ángulos?”
Tipos de ángulos
Ángulo nulo:
El ángulo nulo es aquel formado por dos líneas que coinciden en su vértice y en sus extremos, por lo tanto, su abertura es de 0°.
Ángulo agudo:
El ángulo agudo es aquel con una abertura de vértice mayor de 0° y menor de 90°.
Vea también Ángulo agudo.
Ángulo recto:
El ángulo recto se encuentra conformado por dos semirrectas cuya abertura de vértice es de 90°.
Ángulo obtuso:
El ángulo obtuso es aquel cuya abertura de vértice es mayor de 90° y menor de 180°.
Ángulo llano:
El ángulo llano es aquel constituido por dos semirrectas con un vértice de 180° de abertura.
Vea también Ángulo llano.
Ángulo oblicuo:
El ángulo oblicuo, reflejo o cóncavo, es aquel que posee un vértice de abertura superior de 180° y menor de 360°.
Ángulo perigonal:
El ángulo perigonal o ángulo completo es aquel que tiene una abertura de 360°.
Ángulo central:
El ángulo central es aquel cuyo vértice se encuentra en el centro de una circunferencia.
Ángulo inscrito:
Se denomina ángulo inscrito aquel donde el vértice es un punto de la circunferencia, y donde esta, a su vez, se encuentra cortada por las semirrectas que lo constituyen o, dicho en otras palabras, el ángulo inscrito está conformado por dos cuerdas de una circunferencia que confluyen en un punto común de la circunferencia formando un vértice.
Ángulo interior:
El ángulo interior o interno es aquel que se encuentra en el interior de un polígono. También se denomina ángulo interior aquel cuyo vértice se encuentra en la parte interior de la circunferencia y que está formado por cuerdas en cuyo punto de intersección se forma un vértice.
Ángulo exterior:
En el ángulo exterior, el vértice se encuentra en un punto externo a la circunferencia y sus lados son semirrectas que se encuentran, en relación con esta, en una posiciones secantes, tangentes o ambas.
Ángulo seminscrito:
El ángulo seminscrito es aquel cuyo vértice se encuentra en la circunferencia, y se constituye de una cuerda y una línea tangente que confluyen en el vértice.
Ángulo complementario:
El ángulo complementario es aquel que, junto con otro, suma una abertura de 90°. Puede tratarse de ángulos consecutivos o no en el espacio, pero serán complementarios siempre que la sumatoria de sus ángulos arroje 90° como resultado.
Vea también Ángulos complementarios.
Ángulo suplementario:
Como ángulo suplementario se denomina aquel que, junto con otro, suma una abertura de 180°.
TRIÁNGULOS
Definición de Triángulo
El triángulo es un polígono de tres lados que da origen a tres vértices y tres ángulos internos. Es la figura más simple, después de la recta en la geometría. Como norma general un triángulo se representa con tres letras mayúsculas de los vértices (ABC).
De acuerdo a la longitud de sus lados, un triángulo pude clasificarse en equilátero, donde los tres lados del triángulo son iguales; en isósceles, el triángulo tiene dos lados iguales y uno desigual, y en escaleno, donde el triángulo tiene los tres lados desiguales.
También se pueden clasificar según la medida de sus ángulos, puede ser un acutángulo, donde los tres ángulos son agudos; es decir, ángulos menores que 90°. Si un triángulo presenta un ángulo recto o ángulo de 90° se dice que es rectángulo, y si presenta a uno de los tres ángulos como obtuso; es decir, un ángulo mayor que 90° se considera como obtusángulo.
Esta figura tiene como característica principal que la suma de sus tres ángulos siempre es igual a 180°. Si conocemos dos de ellos podemos calcular cuánto medirá el tercero.

Otra característica es que en el triángulo rectángulo, los lados que forman el ángulo recto se llaman catetos y el lado opuesto se llama hipotenusa.
El área de un triángulo es igual a su base (uno cualquiera de sus lados) por su altura (segmento perpendicular a la base o a su prolongación, trazado desde el vértice opuesto al lado de la base) partido por dos, en otras palabras, es (base x altura)/2.
El triangulo presenta otra definición en el campo de la música, como instrumento de percusión de altura indeterminada, constituido por una barra de metal doblada en forma de triángulo, abierta en un vértice, el cual se sostiene con un dedo o cuerda manteniéndola suspendida en el aire y se toca golpeándola con una varilla metálica. Éste instrumento es muy común en las orquestas.
En el ámbito de la astronomía; el triángulo o Triangulum, es una pequeña constelación del Hemisferio Norte situada entre las de Andrómeda, Piscis, Aries y Perseo.
TRIÁNGULOS
Un triángulo es el polígono que resulta de unir 3 puntos con líneas rectas.
Todo triángulo tiene 3 lados (a, b y c), 3 vértices (A, B y C) y 3 ángulos interiores (A, B y C)
Habitualmente se llama lado a al lado que no forma parte del ángulo A. Lo mismo sucede con los lados b y c y los ángulos B y C.
Los triángulos podemos clasificarlos según 2 criterios:
Según la medida de sus lados
- Equilátero
Los 3 lados (a, b y c) son iguales
Los 3 ángulos interiores son iguales
- Isósceles
Tienen 2 lados iguales (a y b) y un lado distinto (c)
Los ángulos A y B son iguales, y el otro agudo es distinto
- Escaleno
Los 3 lados son distintos
Los 3 ángulos son también distintos
Según la medida de sus ángulos
- Acutángulo
Tienen los 3 ángulos agudos (menos de 90 grados)
- Rectángulo
El ángulo interior A es recto (90 grados) y los otros 2 ángulos son agudos
Los lados que forman el ángulo recto se llaman catetos (c y b), el otro lado hipotenusa
- Obtusángulo
El ángulo interior A es obtuso (más de 90 grados)
Los otros 2 ángulos son agudos
No hay comentarios:
Publicar un comentario